Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis

نویسندگان

  • Geir Halnes
  • Tuomo Mäki-Marttunen
  • Klas H Pettersen
  • Ole A Andreassen
  • Gaute T Einevoll
چکیده

Current-source density (CSD) analysis is a well-established method for analyzing recorded local field potentials (LFPs), that is, the low-frequency part of extracellular potentials. Standard CSD theory is based on the assumption that all extracellular currents are purely ohmic, and thus neglects the possible impact from ionic diffusion on recorded potentials. However, it has previously been shown that in physiological conditions with large ion-concentration gradients, diffusive currents can evoke slow shifts in extracellular potentials. Using computer simulations, we here show that diffusion-evoked potential shifts can introduce errors in standard CSD analysis, and can lead to prediction of spurious current sources. Further, we here show that the diffusion-evoked prediction errors can be removed by using an improved CSD estimator which accounts for concentration-dependent effects.NEW & NOTEWORTHY Standard CSD analysis does not account for ionic diffusion. Using biophysically realistic computer simulations, we show that unaccounted-for diffusive currents can lead to the prediction of spurious current sources. This finding may be of strong interest for in vivo electrophysiologists doing extracellular recordings in general, and CSD analysis in particular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized theory for current-source density analysis in brain tissue

The current-source density analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that current sources are exclusively made by dipoles, and that the surrounding medium is resistive and uniform. Because of these assumptions, this standard model cannot be used to estimate the contributions of monopolar sources or of non-resistive aspe...

متن کامل

Generalized theory for current-source-density analysis in brain tissue.

The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in some versions of the theory, that the current sources are exclusively made by dipoles. Because of these assumptions, this standard model does not correctly describe the co...

متن کامل

Spectral factorization-based current source density analysis of ongoing neural oscillations.

BACKGROUND Current source density (CSD) analysis is widely used in neurophysiological investigations intended to reveal the patterns of localized neuronal activity in terms of current sources and sinks. CSD is based on the second spatial derivatives of multi-electrode electrophysiological recordings, and can be applied to brain activity related to repeated external stimulations (evoked brain ac...

متن کامل

Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse Current Source Density Method

Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural...

متن کامل

Current Source Density (CSD) Analysis

Current Source Density analysis (CSD) is a class of methods of analysis of extracellular electric potentials recorded at multiple sites leading to estimates of current sources generating the measured potentials. It is usually applied to low-frequency part of the potential (called the Local Field Potential, LFP) and to simultaneous recordings or to recordings taken with fixed time reference to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2017